我們都知道足夠蛋白質的攝取量,對於運動員或一般人的肌肉生長及發育十分重要,只要提高了蛋白質的品質,就能促使其更有效的肌肉蛋白質合成(MPS)是胺基酸的存在,一般來說蛋白質的來源有兩塊,分別為動物性蛋白質與植物性蛋白質,前者可以從肉類、蛋類、奶類與海鮮類取得;後者可由豆類、核果類與五穀根莖蔬菜類獲得,兩者之間胺基酸組成的類型和比例不同。
胺基酸是生物學上重要的有機化合物,由胺基(-NH2)和羧基(-COOH)的官能團,以及連到每一個胺基酸的側鏈組成;而胺基酸也是構成蛋白質的基本單位,它賦予蛋白質特定的分子結構形態,使其分子具有生化活性,包括催化新陳代謝的酶又稱「酵素」。
在人體內的蛋白質是由20個胺基酸所構成,其中9個為必需氨基酸(EAAs)和11個非必需氨基酸(NEAAs)組成;然而,由於EAAs不能由身體生產必須來自我們吃的食物所獲得,從我們的飲食中獲得的必需氨基酸包括纈胺酸(Valine)、甲硫胺酸(Methionine)、亮胺酸(Leucine)、異亮胺酸(Iso-leucine)、蘇胺酸(Threonine) 、賴胺酸(Lysine)、色胺酸(Tryptophan)和苯丙胺酸(Phenylalanine);而兒童發育時還需要額外的必要胺基酸為組胺酸(Histidine),經過長時間的研究發現,它也是成年人不可或缺的必要胺基酸之一。
一般來說大多數動物性食物來源的蛋白質,都含有適量的所有必需胺基酸(EAAs),這些也被稱為完整蛋白質,而來自植物性來源的食物通常會缺少一種或多種必需胺基酸,進而產生出不完整的蛋白質。因此,植物性蛋白顯示出特定胺基酸的限制,包括賴胺酸(Lysine),甲硫胺酸(Methionine)和色胺酸(Tryptophan),這限制了蛋白質在體內的功能;根據一些研究發現,動物和乳製品的蛋白質含有最高量的EAAs,適合在訓練後用於蛋白質合成和肌肉生長。
總體而言,蛋白質的品質是指它在刺激肌肉蛋白質合成(MPS)和促進肌肉生長方面的有效性;這是許多成年人、運動員和健身愛好者們最關心的蛋白質攝取量,另外,還有部分的研究表明,有三種必需氨基酸主要負責調節蛋白質平衡。
我們知道了胺基酸提供蛋白質修復、重建骨骼肌和結締組織的能力;雖然所有必需氨基酸(EAAs)都對此功能很重要,但有三種必需胺基酸有起主要的作用,這三個分別為亮胺酸(Leucine)、異亮胺酸(Iso-leucine)和纈胺酸(Valine),被研究出有調節蛋白質代謝、神經功能、血糖和胰島素調節。
另外,亮胺酸(Leucine)、異亮胺酸(Iso-leucine)和纈胺酸(Valine)也是我們常見的支鏈氨基酸(BCAAs)內必要的成分,這也是肌肉蛋白質合成(MPS)的關鍵成分;當我們食用BCAAs時它們會迅速進入血流並為肌肉組織提供,高濃度的胺基酸成分用於肌肉修復和生長。這也就是為何許多的運動員或是健身愛好者們都會選擇補充BCAAs的關鍵原因。
雖然,研究已經鑑定出前三種必需氨基酸對於肌肉成長有幫助,但似乎亮胺酸(Leucine)對於肌肉生長和纖維強度是較為優秀的,透過一些研究的報告發現,在兩餐之間單獨攝取亮氨酸,就可通過增加肌肉組織中的濃度來延長蛋白質合成效率,因此,有許多的運動營養師都會建議運動員們,在餐與餐之間攝取較高含量的亮氨酸做為補充。
必需氨基酸(EEAs)被認為在6-15g劑量範圍內,能有效的增加肌肉蛋白質的合成,同時,每餐攝取1-3g的亮胺酸(Leucine) 似乎也對於刺激肌肉蛋白質合成佔有十分重要的地位。另外,支鏈氨基酸(BCAAs)內含重要的三種胺基酸:亮胺酸(Leucine)、異亮胺酸(Iso-leucine)和纈胺酸(Valine);似乎單獨或共同食用將能刺激蛋白質的產生以促進肌肉生長和修復。
雖然有研究表示,單獨使用更多劑量的亮氨酸,可以延長蛋白質合成效率和刺激肌肉生長,但它也有表明,透過均衡攝入所有必需氨基酸(EEAs)更可促進肌肉增長。所以,在適當的時間點使用足夠量的亮胺酸(Leucine)與BCAAs,就能加強促進肌肉蛋白質合成(MPS)的增加。
根據上面所說的研究報告,大家都知道肉蛋白質是人體必需氨基酸(EAAs)的豐富來源,同時,肉類蛋白質內也含有高濃度的亮氨酸,例如30克份的牛肉蛋白質,就可以刺激年輕人和老年人的肌肉蛋白質合成(MPS)效率;另外,肉蛋白質還含有優質微量的營養元素和礦物質,這包括鐵、B12 和葉酸,慢性研究也顯示肉類蛋白質有助於增加肌肉量和減少脂肪量,而肉類蛋白質也是一種叫做肉鹼的分子的豐富來源,它能有助於減少因運動訓鍊所造成的肌肉損傷。
攝取正確的好蛋白質來源,對於增強肌肉和減少脂肪來說非常的重要,但似乎並非所有的蛋白質來源都相同,因此,建議大家在攝取蛋白質時能多注意必需氨基酸(EAAs)的含量,如果你想要攝取支鏈胺基酸(BCAAs)做為補充品時,也要特別注意我們蛋白質來源中的高濃度亮氨酸,因為,它將會是我們肌肉生長、強度與恢復重要的胺基酸。
資料參考/draxe、bodybuildin
責任編輯/David
過去的肌肉疲勞理論認為乳酸是主要限制耐力運動表現的罪魁禍首,乳酸被認為是無氧代謝的廢棄產物、以及高強度運動時導致肌肉疲勞的原因,並直接導致運動時的代謝性酸中毒,使肌肉收縮力降低和運動停止,更認為乳酸造成「延遲性肌肉痠痛」(Delayed muscle soreness,簡稱DOMS)。然而許多的研究早已推翻了這些過去的論點。本文將針對常見對乳酸的誤解來一一的破解。
乳酸會導致疲勞嗎?不會! 乳酸讓你運動隔天痠痛嗎?不會! 這些答案或許會讓部分人驚訝,因為直到現在,仍能常聽到人們把運動隔天痠痛的罪魁禍首推給「乳酸」。事實上,這樣的理論早已被推翻多年,但至今仍根深蒂固在大家腦海裡。讀一遍專業運動營養師的詳細解說,你會更了解乳酸的形成、乳酸對運動「好處」,甚至分辨出Lactic acid和Lactate(中文皆翻譯為乳酸)其實大不同。
ATP是運動時骨骼肌收縮的即時能量來源,在運動期間,肝醣與葡萄糖可以分解為丙酮酸(Pyruvate)以產生ATP。丙酮酸在有氧氣的情況下可以進入粒線體進行氧化代謝,以獲得更多的ATP,而在無氧的情況下則會代謝成乳酸(Lactic acid)。
Lactic acid和Lactate中文皆譯為「乳酸」。然而事實上Lactic acid並不等於Lactate,Lactic acid是弱酸,並且會迅速解離成氫離子,剩餘的部分則與鈉離子(Na+)或鉀離子(K+)結合形成稱為乳酸(Lactate)的乳酸鹽,肌肉中不會有太多的Lactic acid,血液裡就更少了,因此乳酸不會長時間堆積在體內。有些學者認為可以將乳酸鹽視為是一種人體內酸性的緩衝物質,乳酸鹽的產生(特別是如果伴隨有高的乳酸鹽去除能力)更有可能延遲酸中毒的發生。而近年的研究也發現,運動誘導性酸中毒對於骨骼肌收縮能力的影響有限,體外研究表明酸性環境具有保護作用可以抑制骨骼肌中的高鉀血症。其他乳酸產生帶來的有益效果還包括從血紅蛋白釋放更多的氧氣、刺激通氣量、肌肉血流量的增強和心血管驅動力的增加。顯然,乳酸鹽在代謝性酸中毒和運動疲勞中扮演的角色必須重新評估。
以往認為乳酸是無氧性激烈運動下的產物,因為在高強度下運動時,我們無法及時提供電子傳遞鍊足夠濃度的氧氣,積聚的丙酮酸才會代謝成乳酸。然而氧氣的可利用性,只是導致肌肉和血液中乳酸鹽在次大運動強度期間增加的幾個因素之一,事實上,無論是否存在氧氣,都可以經由糖解作用形成乳酸,甚至在靜止時產生乳酸。
使乳酸產生急劇增加的情況有:快肌纖維的招募使用上升、氧氣的遞送效率、肌肉低氧、糖解作用加速、粒線體能量代謝的能力,以及通過身體中其它細胞清除和利用乳酸的能力等多種因素。休息時,血中乳酸之所以能夠維持1mM的原因,就在於乳酸的產生與排除達到平衡。
如上圖所示,氧氣的吸收與利用會隨著運動強度呈線性地增加,但乳酸鹽(Lactate)的產生並非隨著運動強度線性地增加,而是穩定地產生,直到運動強度超過了「有氧代謝」能夠供應的能量負荷,此時身體改以利用「無氧代謝」來提供主要比例的能量來源,遠大於「有氧代謝」,當乳酸的生產速率超過移除速率時,組織內的乳酸濃度提高,使得血液中的乳酸值增加,並隨著無氧代謝地進行會逐漸接近乳酸閾值。
由於Lactic acid(和隨後的Lactate)會隨著運動疲勞的發展而產生,所以過去學者誤認為Lactic acid就是高強度運動下肌肉疲勞的原因。然而乳酸真的會導致疲勞嗎?
答案是:不會!
Lactic acid肯定不會導致疲勞,而Lactate可以被人體回收利用,心臟、大腦和慢肌纖維能夠非常容易地從血液中清除乳酸,所以如果將快肌纖維產生的Lactate運送到慢肌纖維,或另一個粒線體還未完全過載的肌肉中,這些肌肉可以將乳酸鹽轉換回丙酮酸將其送到檸檬酸循環,並進入電子傳遞鍊,在有氧的狀態下進行有氧代謝產生能量(ATP)。因此,Lactate在運動期間可作為骨骼肌的燃料來源,也是心臟、腦、腎臟和肝臟可用的燃料來源!
此外,未以上述方式氧化的乳酸,會從運動肌肉擴散到毛細血管中,並通過血液運輸到肝臟重新合成為葡萄糖,這被稱為「柯氏循環」。而運動過程中累積的乳酸,大約在停止運動後1-2小時血乳酸的濃度就會回復到休息時的狀態。乳酸的產生實際上是一種生存適應,決定了我們能夠在高強度運動下維持多長的時間。
以下這些才是高強度運動造成疲勞的元兇:
.無氧代謝時產生的中間產物例如磷酸鹽(Pi)增加
.高能磷酸鹽(high energy phosphates)比例改變
.活性氧物質(reactive oxygen species, ROS)等產生
答案是:不會!
運動後1-3天的延遲性肌肉痠痛現象,與乳酸的形成沒有顯著關連。延遲性肌肉痠痛常見會發生在突然急遽增加運動量與強度、進行大量的肌肉離心收縮(eccentric contraction)運動,造成以下狀況,才是遲發性肌肉痠痛的主要原因。
.肌肉纖維的輕微斷裂傷害
.敏感化的疼痛感覺接受器(sensitised nocireceptors)
.超結構肌肉損傷(ultrastructural muscle damage)
乳酸閾值是指平緩增加的血乳酸濃度會在某一個點急劇拔升,這個血乳酸突然開始大量堆積的拐點就被稱為「乳酸閾值」。V̇O2 max是用來量測運動員最大能力/潛力的指標,而乳酸閾值或到達乳酸閾值時的V̇O2、速度或力量功率,則可以用以估計與度量運動員當前的能力,並用以制定訓練時的運動強度。
血液中的乳酸濃度來自於產生量與排除量平衡後的結果。訓練可以誘導人體對於乳酸鹽堆積有更大的緩衝與耐受性,使得在同樣的負荷絕對量下產生較少的乳酸,運動員還可以透過激烈運動下乳酸大量產生的現象,達成提昇乳酸排除能力的效果,藉此提高乳酸閾值來增進無氧能力。乳酸是運動者的朋友而非敵人,故而在體育運動研究上,應用血液乳酸濃度來當作衡量運動員耐力的指標,以及評估運動員無氧代謝的能力與監控生理負荷強度。
.不論是Lactic acid或Lactate,都不是在較高強度訓練時疲勞的直接原因。
.血乳酸積聚只代表生產和清除的平衡,並不是一個絕對值。只有相對較短,非常強烈的身體活動會導致乳酸累積。
.乳酸鹽堆積並不一定表示乳酸的產量增加、導致氫離子濃度增加和相應的酸中毒,乳酸生產實際上可以幫助抑制酸中毒的發展。
.Lactate是運動中的肌肉、肌肉恢復和休息期間,以及心臟、腦、肝臟和腎臟中有價值的能量來源。
.延遲性肌肉痠痛(DOMS)有許多的成因,但不包括Lactic acid或Lactate的產生。
.乳酸閾值(Lactate threshold)是可測量及可訓練的因子,可以用來幫助監測訓練適應。
備註:以上資訊僅供參考,不能替代營養師給出的適當醫學診斷或飲食建議 。本說明僅供成年人使用,本文在發佈時內容儘可能確保為最新證據,但不排除未來更進一步的證據可能推翻目前的結論。