伏地挺身對於許多成年男性來說,是在熟習不過的體能訓練動作,然而,這項訓練除了可以訓練我們的上半身肌肉之外,還可以預測心血管疾病的風險。根據一項最新的研究表示,當一個人可以正確完成伏地挺身的次數越多,罹患心血管疾病的風險就越低,這些發現將可能會建立出一套新的簡單基礎風險評估模式,至於這樣的研究是否真的可行?我們將於這篇文章告訴你。
依據世界衛生組織(WHO)的數據表明,每年因心血管疾病(Cardiovascular disease ,CVD)導致的死亡人數為1790萬,約佔全球死亡人數的31%。多數造成新血管疾病的因素主要都來自於飲食不健康、缺乏運動習慣、抽菸以及經常性的喝酒習慣所導致。因此,運動習慣與心血管疾病(CVD)之間有關已經不是一個新話題。
然而,目前正確評估與心血管風險相關的身體適應性的方法,例如心臟運動壓力測試(Cardiac exercise stress testing)或次最大跑步機運動測試,不僅檢查的成本昂貴並會花費大量的時間。現在,來自馬薩諸塞州波士頓的哈佛大學公共衛生學院的一項新研究的發現,醫生可以依據一個人能完成幾次伏地挺身的能力,來進行最初期心血管疾病的風險評估。
在2019年2月發表於JAMA上的研究報告指出,能完成40下伏地挺身的人比完成10下以內的人,在心血管疾病的風險上相對降低許多。這項研究在2000年1月1日至2010年12月31日之間,在印第安納州的1個門診診所中對18歲以上的男性消防員進行了這項研究,並在2000年2月2日至2007年11月12日之間進行了基線和定期的身體檢查,包括伏地挺身能力和運動耐量的測試。根據完成的伏地挺身次數將參與者分為5組,共有1562名參與者接受了基線檢查,最終分析中包括1104名具有可用伏地挺身數據的參與者,並開始長達10年的追蹤分析。
在隊列的平均值(SD)年齡為39.6(9.2)歲,BMI的平均(SD)為28.7(4.3)。在10年的隨訪期間,參與者獲得了37個與心血管疾病(CVD)相關的結果(8601人/年),並具有可用的伏地挺身數據;並發現增加伏地挺身次數的能力與心血管疾病(CVD)事件之間存在顯著的負相關性,與完成少於十個俯臥撑的參與者相比,能夠完成40個以上俯臥撑的參與者發生心血管疾病(CVD)事件的風險降低了96%(IRR,0.04; 95%CI,0.01-0.36)。
帶領這項研究的醫學博士賈斯汀·楊(Justin Yang)表示,我們的發現提供了證據,證明伏地挺身的次數幾乎可在任何情況與環境下,進行簡易的心血管疾病風險評估,這是一個最快速以及最方便的辦法。同時,令人驚訝的是伏地挺身的能力與跑步機測試的結果相比,與心血管疾病的風險更具有關連性。
但是,研究人員也特別警告說,由於他們的參與者是由特定群體的人所組成,都是介於30-40多歲擁有一定運動習慣的男性,因此,這項研究結果可能不適用於女性以及年齡較大或較小的人。雖然如此,但目前的發現仍然對於建立心血管健康與運動之間的相關性依然重要。最後,醫學博士賈斯汀·楊(Justin Yang)表示,這項研究將說明並強調身體的能力對於健康的重要性,以及臨床醫生應該在臨床期間如何快速評估身體是否健康。
你會想知道「伏地挺身是徒手訓練的最佳運動」
我猜你應該會有「修正這6個錯誤讓你做出完美的伏地挺身」這個疑問
可能還會有想挑戰「如何成功做出單臂伏地挺身」的念頭
資料參考/JAMA、medicalnewstoday
責任編輯/David
身體運動對於免疫系統的影響,其實是起源於壓力生理學。那壓力又是什麼?我們用簡單的方式來說明,壓力就是在你沒有任何心理準備之前,影響身體、心理與情緒之間的改變,例如突然間要你上台報告的時候,你的身體與心理就會產生不舒服的感覺,這也就是生理上與心理上所產生的相對反應,就稱為壓力反應。
然而,無論在生理或心理上我們的壓力都是先由大腦(神經系統)所產生,透過交感神經末梢與腎上腺素來分泌兒茶酚胺,並刺激下視丘-垂體-腎上腺軸(HPA或HTPA軸)的反應,促使腎上腺皮質軸釋放皮質醇(cortisol)協助人體對抗壓力。
上面所敘述的這些壓力激素,都會引起免疫細胞的反應以及腎上腺素接受器與皮質醇接受器的表現,腎上腺在運動對免疫系統的作用,可以透過一般適應症候群(GAS)中觀察出來,也就是說根據不同的壓力源,都會產生非常類似的反應。
像是我們參加馬拉松或是超出個人極限的運動,這樣巨大的訓練壓力時,就會導致體內的皮質醇的濃度大量上升,因此,有許多的運動性刺激會透過活化腎上腺皮質分泌出皮質醇,進而影響我們的淋巴球在數量、遷移與功能性的改變。早在上個世紀的研究中就指出,運動員在跑完馬拉松之後血液中的白血球數量會大幅增加,但如果是參加充滿競爭性的馬拉松比賽後,反而會降低白血球的嗜中性球對細菌的吞噬能力。
有許多的人都會發現,為何越運動反而越容易生病?這是因為免疫力在開窗期會大量的下降,這時後就很容易感染一些病毒,進而增加身體受到感染的機會。關於這個問題我們將運用溫和運動與激烈運動來做為比較。
基本上溫和運動與激烈運動都會促使淋巴細胞移動到血液裡,但若是我們動態運動(Vo2max 70%)的時間持續超過一個小時,這時後反而會導致血液中的淋巴細胞數量的減少。簡單來說,在劇烈運動後的身體恢復期,會使得淋巴球從循環系統中消失,關於這點有許多的研究與動物實驗中,可以發現劇烈運動後,會使得淋巴球與自然殺手細胞產生功能上的缺陷,這樣的現象就是當我們長時間劇烈運動之後,導致免疫功能暫時性的缺損約3-72小時,這也就是大家常說的開窗期(OPEN WINDOW)。
正因為開窗期的現象,讓運動員與一般人在免疫系統上來說,會因為身體的免疫能力下降,進而更容易受到細菌與病毒的入侵,而導致身體更容易生病。
資料參考/verywellfit
責任編輯/David
過去的肌肉疲勞理論認為乳酸是主要限制耐力運動表現的罪魁禍首,乳酸被認為是無氧代謝的廢棄產物、以及高強度運動時導致肌肉疲勞的原因,並直接導致運動時的代謝性酸中毒,使肌肉收縮力降低和運動停止,更認為乳酸造成「延遲性肌肉痠痛」(Delayed muscle soreness,簡稱DOMS)。然而許多的研究早已推翻了這些過去的論點。本文將針對常見對乳酸的誤解來一一的破解。
乳酸會導致疲勞嗎?不會! 乳酸讓你運動隔天痠痛嗎?不會! 這些答案或許會讓部分人驚訝,因為直到現在,仍能常聽到人們把運動隔天痠痛的罪魁禍首推給「乳酸」。事實上,這樣的理論早已被推翻多年,但至今仍根深蒂固在大家腦海裡。讀一遍專業運動營養師的詳細解說,你會更了解乳酸的形成、乳酸對運動「好處」,甚至分辨出Lactic acid和Lactate(中文皆翻譯為乳酸)其實大不同。
ATP是運動時骨骼肌收縮的即時能量來源,在運動期間,肝醣與葡萄糖可以分解為丙酮酸(Pyruvate)以產生ATP。丙酮酸在有氧氣的情況下可以進入粒線體進行氧化代謝,以獲得更多的ATP,而在無氧的情況下則會代謝成乳酸(Lactic acid)。
Lactic acid和Lactate中文皆譯為「乳酸」。然而事實上Lactic acid並不等於Lactate,Lactic acid是弱酸,並且會迅速解離成氫離子,剩餘的部分則與鈉離子(Na+)或鉀離子(K+)結合形成稱為乳酸(Lactate)的乳酸鹽,肌肉中不會有太多的Lactic acid,血液裡就更少了,因此乳酸不會長時間堆積在體內。有些學者認為可以將乳酸鹽視為是一種人體內酸性的緩衝物質,乳酸鹽的產生(特別是如果伴隨有高的乳酸鹽去除能力)更有可能延遲酸中毒的發生。而近年的研究也發現,運動誘導性酸中毒對於骨骼肌收縮能力的影響有限,體外研究表明酸性環境具有保護作用可以抑制骨骼肌中的高鉀血症。其他乳酸產生帶來的有益效果還包括從血紅蛋白釋放更多的氧氣、刺激通氣量、肌肉血流量的增強和心血管驅動力的增加。顯然,乳酸鹽在代謝性酸中毒和運動疲勞中扮演的角色必須重新評估。
以往認為乳酸是無氧性激烈運動下的產物,因為在高強度下運動時,我們無法及時提供電子傳遞鍊足夠濃度的氧氣,積聚的丙酮酸才會代謝成乳酸。然而氧氣的可利用性,只是導致肌肉和血液中乳酸鹽在次大運動強度期間增加的幾個因素之一,事實上,無論是否存在氧氣,都可以經由糖解作用形成乳酸,甚至在靜止時產生乳酸。
使乳酸產生急劇增加的情況有:快肌纖維的招募使用上升、氧氣的遞送效率、肌肉低氧、糖解作用加速、粒線體能量代謝的能力,以及通過身體中其它細胞清除和利用乳酸的能力等多種因素。休息時,血中乳酸之所以能夠維持1mM的原因,就在於乳酸的產生與排除達到平衡。
如上圖所示,氧氣的吸收與利用會隨著運動強度呈線性地增加,但乳酸鹽(Lactate)的產生並非隨著運動強度線性地增加,而是穩定地產生,直到運動強度超過了「有氧代謝」能夠供應的能量負荷,此時身體改以利用「無氧代謝」來提供主要比例的能量來源,遠大於「有氧代謝」,當乳酸的生產速率超過移除速率時,組織內的乳酸濃度提高,使得血液中的乳酸值增加,並隨著無氧代謝地進行會逐漸接近乳酸閾值。
由於Lactic acid(和隨後的Lactate)會隨著運動疲勞的發展而產生,所以過去學者誤認為Lactic acid就是高強度運動下肌肉疲勞的原因。然而乳酸真的會導致疲勞嗎?
答案是:不會!
Lactic acid肯定不會導致疲勞,而Lactate可以被人體回收利用,心臟、大腦和慢肌纖維能夠非常容易地從血液中清除乳酸,所以如果將快肌纖維產生的Lactate運送到慢肌纖維,或另一個粒線體還未完全過載的肌肉中,這些肌肉可以將乳酸鹽轉換回丙酮酸將其送到檸檬酸循環,並進入電子傳遞鍊,在有氧的狀態下進行有氧代謝產生能量(ATP)。因此,Lactate在運動期間可作為骨骼肌的燃料來源,也是心臟、腦、腎臟和肝臟可用的燃料來源!
此外,未以上述方式氧化的乳酸,會從運動肌肉擴散到毛細血管中,並通過血液運輸到肝臟重新合成為葡萄糖,這被稱為「柯氏循環」。而運動過程中累積的乳酸,大約在停止運動後1-2小時血乳酸的濃度就會回復到休息時的狀態。乳酸的產生實際上是一種生存適應,決定了我們能夠在高強度運動下維持多長的時間。
以下這些才是高強度運動造成疲勞的元兇:
.無氧代謝時產生的中間產物例如磷酸鹽(Pi)增加
.高能磷酸鹽(high energy phosphates)比例改變
.活性氧物質(reactive oxygen species, ROS)等產生
答案是:不會!
運動後1-3天的延遲性肌肉痠痛現象,與乳酸的形成沒有顯著關連。延遲性肌肉痠痛常見會發生在突然急遽增加運動量與強度、進行大量的肌肉離心收縮(eccentric contraction)運動,造成以下狀況,才是遲發性肌肉痠痛的主要原因。
.肌肉纖維的輕微斷裂傷害
.敏感化的疼痛感覺接受器(sensitised nocireceptors)
.超結構肌肉損傷(ultrastructural muscle damage)
乳酸閾值是指平緩增加的血乳酸濃度會在某一個點急劇拔升,這個血乳酸突然開始大量堆積的拐點就被稱為「乳酸閾值」。V̇O2 max是用來量測運動員最大能力/潛力的指標,而乳酸閾值或到達乳酸閾值時的V̇O2、速度或力量功率,則可以用以估計與度量運動員當前的能力,並用以制定訓練時的運動強度。
血液中的乳酸濃度來自於產生量與排除量平衡後的結果。訓練可以誘導人體對於乳酸鹽堆積有更大的緩衝與耐受性,使得在同樣的負荷絕對量下產生較少的乳酸,運動員還可以透過激烈運動下乳酸大量產生的現象,達成提昇乳酸排除能力的效果,藉此提高乳酸閾值來增進無氧能力。乳酸是運動者的朋友而非敵人,故而在體育運動研究上,應用血液乳酸濃度來當作衡量運動員耐力的指標,以及評估運動員無氧代謝的能力與監控生理負荷強度。
.不論是Lactic acid或Lactate,都不是在較高強度訓練時疲勞的直接原因。
.血乳酸積聚只代表生產和清除的平衡,並不是一個絕對值。只有相對較短,非常強烈的身體活動會導致乳酸累積。
.乳酸鹽堆積並不一定表示乳酸的產量增加、導致氫離子濃度增加和相應的酸中毒,乳酸生產實際上可以幫助抑制酸中毒的發展。
.Lactate是運動中的肌肉、肌肉恢復和休息期間,以及心臟、腦、肝臟和腎臟中有價值的能量來源。
.延遲性肌肉痠痛(DOMS)有許多的成因,但不包括Lactic acid或Lactate的產生。
.乳酸閾值(Lactate threshold)是可測量及可訓練的因子,可以用來幫助監測訓練適應。
備註:以上資訊僅供參考,不能替代營養師給出的適當醫學診斷或飲食建議 。本說明僅供成年人使用,本文在發佈時內容儘可能確保為最新證據,但不排除未來更進一步的證據可能推翻目前的結論。